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Analysis of Rectangular Waveguide
Junctions by the Method of Lines

Wilfrid Pascher, Member, IEEE, and Reinhold Pregla, Senior Member, IEEE

Abstract— A novel discretization on two crossed line systems
is introduced in the method of lines to analyze junctions in
rectangular waveguides. This discretization is one-dimensional
and replaces the two-dimensional discretization otherwise nec-
essary for such structures. Hence the matrices encountered are
small compared with other approaches. Equivalent circuits for
the right-angle E-plane corner and scattering parameters for the
asymmetric T-junction are presented, which agree very well with
literature.

1. INTRODUCTION

HE MODE matching technique is the classical method

for the analysis of junctions in rectangular waveguides
[1]-[3]. By the method of lines (MoL) [4], [5], a variety of
planar and dielectric waveguide structures has been investi-
gated (for a comprehensive description see [6]). It has also
been applied to discontinuities in rectangular waveguides [5],
[71-191.

In this paper the MoL is adapted for the efficient analysis
of junctions in rectangular waveguides. For its application to
E-plane or H-plane junctions (Fig. 1), we use the known field
behavior in one transverse direction and discretize the wave
equation in the other transverse direction only [8]. In order to
avoid two-dimensional discretization normally necessary for
waveguide junctions, a novel approach is introduced, where
the potential and the fields are evaluated on two line systems
perpendicular to each other. Each line system represents a
one-dimensional discretization as it is used to model, for
example, a step discontinuity yielding two independent so-
lutions of the wave equation. Additionally, the potential at
the interfaces between different waveguide regions (Fig. 2) is
suitably matched. Finally, the generalized scattering matrix is
computed. Cascaded junctions are analyzed by combining the
matrices relating the incoming and outgoing waves.

In the following, the approach is applied to various E-
plane junctions. Equivalent circuits for the right-angle corner
and scattering parameters for the asymmetric T-junction are
presented. A generalization to H-plane structutres is straight-
forward.

II. CROSSED LINE SYSTEMS FOR THE
ANALYSIS OF WAVEGUIDE JUNCTIONS

Generally, junctions in rectangular waveguides, as in Fig. 2,
are divided into the waveguide regions i (i = 1,...,4) and
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Fig. 1. Junctions in rectangular waveguides.
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Fig. 2. Discretization of a waveguide junction on two crossed line systems.

the resonator region 5, similar to the resonator method after
Kiihn [1]. In case of a two port consisting of the regions
1 and 2 only, the problem is reduced to the analysis of
discontinuities, as presented in [8]. The procedure described
in this section employs the novel approach of the two crossed
line systems (Fig. 2) to extend the method for the investigation
of multiports. In what follows, formulas already developed for
discontinuities are only summarized, and the reader is referred
to [8] for a more comprehensive derivation.

For T E1,-to-z modes, which are the only modes arising
from the junctions of Fig. 1 by excitation with T Ejqy-to-z
waves, the electromagnetic fields in all five regions are derived
from the potential ¢ by

E, =0 ﬁonI(ET—-Xi) $in A T -1
L. ~_ 0 - ~_ 0O
E, = —jsin AT - —a—g noHy = Az cos AT - 5%
E, = jsinXmT . %% noH = Ay COS AT - g—;’b D
with a time dependence exp(jwt) and X, = w/a. The

waveguide width o is assumed to be constant for the whole
structure, and all lengths are normalized by T = kox, etc. The
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potential 1 must fulfill the Neumann condition at all metallic
boundaries.

A. Discretization and Transformed Potentials

In the resonator region 5, the potential ¥ is discretized on
two crossed line systems running in z and y direction, as shown
in Fig. 2, such that the potential is decomposed into two parts

Yv=9,+¢,. (2)

%, is defined on the horizontal lines and corresponds to the 3
for the step discontinuity, whereas 4, is defined on the vertical
lines and fulfills the Neumann condition on the left and right

boundary.
As in [8], we discretize the Helmholtz equation
0%y 8% 2
— t+ — — A =0 3
822+8§2 2 et 3

but separately for 9, and 1, and obtain, for example, for the
potential 1,

- (—(HZ)‘2DZZ + (% - ar)I) $.=0. “)

The difference operator D)., is transformed to principal axes
by

(5.) 7 T'D..T. = —X.. 5)

We obtain the general solution for the transformed potential
Y. =T, = exp(-T, A, +exp(T,7) B,  (6)

with the diagonal propagation matrix in y direction

r, =diag(ye) = (X + (o —e)l)’. (D)

For the two potentials 9, and %, two different kinds of
discretization distances hy, ,, line numbers N, ., transforma-
tion matrices 7' ., wave vectors A, ., B, ., and propagation
matices I', , are introduced in the resonator region 5 where,
for example, T’ is the transformation matrix for %,. Only
I", belongs to 1, because it stands for the propagation in
y direction. The waveguide region ¢ is treated as for the
step discontinuity with the according potentials %,, and the
quantities N,, T;, A,, B;, and I'; belonging to it.

B. Field Matching at the Terminal Planes

We have to match the transverse electromagnetic field
at each terminal plane 4, which is the interface between
waveguide ¢ and the resonator region 5. First we establish
the matching equations at terminal 1. Here E, and H,, that
means v and 9 /J%, must be matched. If ¢ is matched on all
the discretization lines, 8+ /07 and thus H, is also matched.

For the derivative of the first potential 0%, /9Z we obtain
a completely analogous equation as for the step discontinuity
since the derivative of the second potential d4,/d% vanishes
because of the Neumann condition

Ry (A;-B1)= A, - B, ®
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with
—~1ept
R, =1,T, T1I'
where T',_; is an N; x N, matrix which consists of those
elements of T, corresponding to the common aperture of
regions 1 and 5.
So far the analysis was equal to that for the step disconti-

nuity [8]. For the matching of the potential 4 itself, however,
9, must be considered as an additional term

T, (Al + Bl) :Ty~1 (Ay + By) +
+(Gi1A-+G_B) )
P,

where Gil is an Ny x N, matrix, namely the Fourier matrix

z

for extrapolation of 4, from region 5 to terminal 1 (see the
Appendix)

75
(GT)ir =/ ~ O exp(dy,ed,) (k=0...N.—1). (10)

Analogous equations result for terminal 2
R; (B — Ay) =F, A, — F!B,
Ty (Bo+A2) =Ty 5 (F; Ay +FIB,) +
+(G7 VA, +G],V.B,) (12)
¥,

where the normalized distance [, between terminal 1 and 2
is taken into account by the Fourier matrix £y and the sign
matrix V, defined by

FF = exp(+I.1,)
V. =diag((-n*) (k=0...N,—1).

1D

(13)

For terminals 3 and 4, we use (8)-(13) with y and 2z
interchanged.

C. Determination of the Scattering Matrix

To compute the scattering matrix, we have to establish a
relation between the wave vectors A, and B; by eliminating
Ay, By and A, B, from (8)(12). First, we calculate the
wave vectors A, By in region 5 from (8) and (11)

A FY I+ ovo1 [Ri (A -By)

= e T o

This equation is valid only for

(FF —F;); =2(sinh I".1,); # 0 (15)

that means

L, #Z0 and — jyu = ku # nﬂ’ﬂz

which is the case if no resonance occurs. The wave vectors A .,
B, of the potential 9, are computed completely analogously
from Az, Bz and A4, By.

Now we substitute A, B, and A, B into (9) and (12) and
thus obtain (16)—(18), shown at the top of the next page. The
coupling matrices G, must be reduced to the appropriate line
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T (Al +B1) _ Ty_,,l (tanhl"zjz)_l
T |Tyo2 (sinh I, 1)1

Ty (Ag + Bs)

n Gs3_1 Ga_1
G392V, Ga oV,
with the coupling matrices
G = %(G F++G+F‘)
Gy = %(G_ +G)
namely
(gl)zk = b}\i& COSh'}’zk(Zz _21,)
(G2 = /252 coshyuZ

2651

T,.1 (sinh I",1,)7" T[Ry (A — By)
Tyﬁ,g (tanhl’ziz)“l Ry (A2 - Bz)
: 71 |R3 (A3 — B3)

] (sinh I"yl,) |:R4 (A4 —By) (16)
G = 3(GiFf+GIF;)
6. = i(e;+6t) a7
(G3) = 2;]\2% coshyyr(ly — 7,) 18)
(Ga) = 2—?]\%1& cosh v, 7;

numbers; for example, Gs_.1 is an N; X N3 matrix containing
the corresponding elements of Gs. If the terminals in y and z
direction are interchanged, that is, 1 < 3 and 2 < 4, (16) is
replaced by a completely analogous one.

For the determination of the scattering matrix, we compute
the outgoing waves B, from the incoming ones A; and obtain
the desired system of equations

Ty Ty | Wiz Wy

B
+ / / 1
T21 TQ 23 24

Ty Ts
Tw T:
T | Wiy Wy
TS | Wh Wh
T3 T3
T43 TZ

W

Wy
Ty
Txn

Wi
!

Ay
A,
Aj
A,

(19)

Wi Was
t !
41 W42

The submatrices of the first two columns are determined as
shown in (20) at the bottom of the page. The submatrices of
the last two columns (n = 3,4) are obtained changing y to z
in (20) and vice versa.

D. Waveguide Corner

In the case of the rectangular waveguide corner we can
simplify the above results. We delete the second and fourth
row and column in (19) and obtain

W13] LAl

TH Wi T
ot ] = TR e

Wi
If we have N, = N; and N, = N3 as in the plain corner,
the respective T and I' matrices are equal, namely

and hence Ry = I, which simplifies the submatrices 7 and
W in (20) according to, for example

T =T, (£I+ (tanh I",1,)™Y)
W3 =Gs (sinh I',1,)7!

(23)
We can now rewrite (21) in the form
TiG, Fi ||Bj 0 Fy | |AS

Al = (sinh I",0,) "' A4

with

and so on.
The scattering parameters are obtained by solving (21) or
(24) for the outgoing wave vectors B;.

E. Cascaded Junctions

To demonstrate the approach, we consider a series connec-
tion of a general junction and a step discontinuity (Fig. 3).
In the junction, the incoming wave A, is unknown. We use
the transmission matrix equation (19) for the general junction
and additionally the transmission matrix equation for the step
discontinuity [8] (15) in adapted form

A; T, T_
0 | _ (TS5, ~T5ry | |[F+A»
—| — = F_B, )
B T_ T,
with the submatrices
~ 1 3
Ty=3 (T Ty 7 + I LTy o T). (26)

T,=T T.=Ts TS corresponds to the front plate of the step discontinuity
r.=rn r,=r, (22) and the propagation is given by the Fourier matrices F'4 =
T = T,., (tanhI1,)"' R, =T, n=12)
Tmn = Ty_m (sinhI1)"' R, (m,n =1,2) 20)
Won = GOnom (sinhI',1,)"' R, (m=3,4; n=1,2)
W, . = GCnomV, (inhIL1L) 'R, (m=3,4 n=12).
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Fig. 4. Symmetric rectangular F-plane corner. (a) Convergence behavior of
the normalized shunt reactance X/Zo-2b/ A, with respect to reciprocal matrix
size. (b) Normalized shunt reactance X/Zy - 2b/ A4 and its location d/b as
a function of normalized frequency. (A, guide wavelength, Zy characteristic
impedance) o 0 0 MMT [1].

exp(+I'l) where [ is the normalized distance between the
Jjunction and the step discontinuity. We eliminate A, and solve
for the outgoing wave coefficients B to compute the scattering
matrix as above.

III. RESULTS

To verify the analysis of single and cascaded junctions,
the scattering parameters or the resulting equivalent circuit
parameters for two examplary structures have been computed
and compared with results of the mode matching technique
(MMT).

Fig. 4 shows the equivalent circuit parameters for a sym-
metric rectangular £-plane corner [1]. The equivalent circuit is
valid for the fundamental mode only. The network parameters
are computed from the scattering coefficients S1; and S; by
the following relations

2
iBiZg= ——©H" 1
J140 14811+ 591
28
§B2Zy = 2l @7

(1+811)? — 8%
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Fig. 5. Asymmetric E-plane T-junction. Magnitude of the scattering coeffi-
cients as a function of frequency o o o MMT [2].

and
X (B1Zo)> +1\ "
2 _(9B,7, 4+ 2220 T2
Zy ( 10 By Zy
1 _
é =14+—= tan~! (31Z0 + 2B2Z0) 1. 28)
b Yob

The guide wavelength runs A\, = 27 /voko and Z; is the
characteristic impedance of the H;q mode.

In Fig. 4(a) the convergence behavior of the normalized
shunt reactance X/Z, - 2b/X, with respect to the reciprocal
matrix sizes is given. As in the method of lines, not the whole
system matrix in (24) must be inverted, but only two half-size
matrices, the comparable matrix dimension is smaller for the
same accuracy. In Fig. 4(b) the normalized shunt reactance
and its location d/b are presented as a function of normalized
frequency. Both curves exactly coincide with the reference
values.

As an example for cascaded discontinuities, the scattering
coefficients of an asymmetric f2-plane T-junction are presented
in Fig. 5 as a function of frequency, which are also in very
good agreement with MMT results [2].

IV. SUMMARY

For general junctions in rectangular waveguides the poten-
tial is computed on two crossed line systems. In the central
(resonator) region it is represented by a superposition of two
potentials with a one-dimensional discretization for each of
them. They are evaluated by field matching at the terminals
after suitable extrapolation to the boundaries of the respective
line systems. Finally, matrix equations are derived for the
incoming and outgoing waves to compute the scattering pa-
rameters. Cascaded junctions are easily analyzed by combining
the matrix equations.
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The scattering parameters for the asymmetric T-junction are
in good agreement with literature. For the E-plane corner, the
convergence of the MoL is better than for the mode matching
technique with respect to the matrix sizes.

APPENDIX
EXTRAPOLATION OF THE POTENTIAL 4, TO z = 0 AND 2 = [,

The potential in spatial domain

¢z = TZ Ez
is calculated by means of the transformation matrix
2-6 i+ )k
(T:)ie = NZOk cos ( sz) (k=0...N;-1)

on the lines z = (i + )h, giving

N,—-1
o - 2— 50k k’/T
¢Z(Z) - k§=0 Nz COS (l—z-

We extrapolate this formula to z = 0, where the cosine terms
become 1.
After discretization in y direction we obtain

12— 5Qk
exp ’)’yky,,,) zk+eXP(’Yykyz) zk)

=0. ~1) (30)

z) T (29

with 7, = (i + %)Ey.

At the extrapolation to z = [,, the cosine terms in (29)
become (—)*; hence, at this position (30) is valid with this
additional sign. Using (30), we finally obtain (9) and (12)
with (10).
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