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Analysis of Rectangular Waveguide

Junctions by the Method of Lines
Wilfrid Pascher, Member, IEEE, and Reinhold Pregla, Senior Member, IEEE

Abstract— A novel discretization on two crossed line systems
is introduced in the method of lines to analyze junctions in

rectangular waveguides. Thks discretization is one-dimensional

and replaces the two-dimensional dkcretization otherwise nec-

essary for such structures. Hence the matrices encountered are

small compared with other approaches. Equivalent circuits for

the right-angle E-plane corner and scattering parameters for the
asymmetric T-junction are presented, which agree very well with
literature,

I. INTRODUCTION

T HE MODE matching technique is the classical method

for the analysis of junctions in rectangular waveguides

[1]-[3]. By the method of lines (MoL) [4], [5], a variety of

planar and dielectric waveguide structures has been investi-

gated (for a comprehensive description see [6]). It has also

been applied to discontinuities in rectangular waveguides [5],

[7]-[9].

In this paper the MoL is adapted for the efficient analysis

of junctions in rectangular waveguides. For its application to

E-plane or H-plane junctions (Fig. 1), we use the known field

behavior in one transverse direction and discretize the wave

equation in the other transverse direction only [8]. In order to

avoid two-dimensional discretization normally necessary for

waveguide junctions, a novel approach is introduced, where

the potential and the fields are evaluated on two line systems

perpendicular to each other. Each line system represents a

one-dimensional discretization as it is used to model, for

example, a step discontinuity yielding two independent so-

lutions of the wave equation. Additionally, the potential at

the interfaces between different waveguide regions (Fig. 2) is

suitably matched. Finally, the generalized scattering matrix is

computed. Cascaded junctions are analyzed by combining the

matrices relating the incoming and outgoing waves.

In the following, the approach is applied to various E-

plane junctions. Equivalent circuits for the right-angle corner

and scattering parameters for the asymmetric T-junction are

presented. A generalization to II-plane structures is straight-

forward.

11. CROSSED LINE SYSTEMS FOR THE

ANALYSIS OF WAVEGUIDE JUNCTIONS

Generally, junctions in rectangular waveguides, as in Fig. 2,

are divided into the waveguide regions z (Z = 1....,4) and
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Fig. 2. Discretization of a waveguide junction on two crossed line systems.

the resonator region 5, similar to the resonator method after

Kuhn [1]. In case of a two port consisting of the regions

1 and 2 only, the problem is reduced to the analysis of

discontinuities, as presented in [8]. The procedure described

in this section employs the novel approach of the two crossed

line systems (Fig, 2) to extend the method for the investigation

of multiports. In what follows, formulas already developed for

discontinuities are only summarized, and the reader is referred

to [8] for a more comprehensive derivation.

For TEln-to-x modes, which are the only modes arising

from the junctions of Fig. 1 by excitation with Z’E1o-to-z

waves, the electromagnetic fields in all five regions are derived

from the potential @ by

with a time dependence exp(jtit) and ~z = m/ti. The

waveguide width a is assumed to be constant for the whole

structure, and all lengths are normalized by z = koz, etc. The
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potential ~ must fulfill the Neumann condition at all metallic

boundaries.

A. Discretization and Transformed Potentials

In the resonator region 5, the potential # is discretized on

two crossed line systems running in z and y direction, as shown

in Fig. 2, such that the potential is decomposed into two parts

+=4, +4.. (2)

@y is defined on the horizontal lines and corresponds to the ~

for the step discontinuity, whereas @z is defined on the vertical

lines and fulfills the Neumann condition on the left and right

boundary.

As in [8], we discretize the Helmholtz equation

(3)

but separately for *V and $3 and obtain, for example, for the

potential *Z

d2~Z
(()

—2
‘2~zz + (& — ET-@– –~z )1) @z= o.

The difference operator D.z is transformed to prirlcipal

by

(~.) ‘2 T;ll T -12zzz=~.

(4)

axes

(5)

We obtain the general solution for the transformed potential

~, = T~#. = exp(–ryV)A. + exp(rvu) B. (6)

with the diagonal propagation matrix in y direction

For the two potentials #y and VZ, two different kinds of

discretization distances hv,,, line numbers NV,,, transforma-

tion matrices Tv,,, wave vectors Av,z, Bg,., and propagation

matices rv,z me introduced in the resonator region 5 where,
for example, Tv is the transformation matrix for @y. Only

ry belongs to q!JZbecause it stands for the propagation in

y direction. The waveguide region i is treated as for the

step discontinuity with the according potentials ~,, and the

quantities N%, Ti, AZ, Bi, and ri belonging to it.

B. Field Matching at the Terminal Planes

We have to match the transverse electromagnetic field

at each terminal plane i, which is the interface between

waveguide i and the resonator region 5. First we establish

the matching equations at terminal 1. Here Ev ancl Hz, that

means @ and 8~/~z, must be matched. If @ is matched on all

the discretization lines, d@/@ and thus Hv is also matched.
For the derivative of the first potential @6Y/8F we obtain

a completely analogous equation as for the step discontinuity

since the derivative of the second potential d~z /iiL; vanishes

because of the Neumann condition

RI (Al – Bl) = Av – BY (8)

with

RI = @T:+lT1rl

where TV- 1 is an N1 x NV matrix which consists of those

elements of Tv corresponding to the common aperture of

regions 1 and 5.

So far the analysis was equal to that for the step disconti-

nuity [8]. For the matching of the potential # itself, however,

@Z must be considered as an additional term

T1 (AI + BI) =TV+I (Av + Bg) +

+ (G:_lAz + G;-lB.) (9)

+.

where G$_ ~ is an N1 x NZ matrix, namely the Fourier matrix

for extrapolation of *Z from region 5 to terminal 1 (see the

Appendix)

r
(G$),k = ~2 ~60~ exp(+yvk~t) (k = 0.. . I’VZ-1). (10)

Analogous equations result for terminal 2

R2 (B2 – AZ) = F;AV – F:BY (11)

Tz (B.z + A2) = Ty_2 (F;AY +F:BJ +

+ (G;42V.A. + G:A2V.B.) (12)

+,

where the normalized distance ~z between terminal 1 and 2

is taken into account by the Fourier matrix I’v and the sign

matrix VZ defined by

F+ = exp(+rz~.)

V: = diag((-l)k) (k = O.. .Nz – 1). (13)

For terminals 3 and 4, we use (8)–(13) with y and z

interchanged.

C. Determination of the Scattering Matrix

To compute the scattering matrix, we have to establish a

relation between the wave vectors A, and B ~ by eliminating

AY, By and AZ, B. from (8)–(12). First, we calculate the

wave vectors Ay, By in region 5 from (8) and (11)

This equation is valid only for

(F: - F;)i = 2(sinhrz7z), # O (15)

that means

iz+o and – j-t.i = k.% # nxllz

which is the case if no resonance occurs. The wave vectors AZ,

B= of the potential @z are computed completely analogously

from A3, B3 and A4, B4.

Now we substitute Av, By and A,, BZ into (9) and (12) and

thus obtain (16)–(18), shown at the top of the next page. The

coupling matrices g, must be reduced to the appropriate line
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[ H~1 (Al + Bl) _ Z’g+l (tanh~Z7Z)-1
T2 (Az + Bz) – TV+2 (sinh~ZiZ)-l

[

+ G3+1 (74+1

~3+2VZ ~4+2Vz

with the coupling matrices

namely

[

Ill (Al – Bl)

R2 (A2 – B2) 1Tv+l (sinh ~zjz)-l

TUa2 (tanhl’z~z)-l

(sinhl’v~y)-l
[

R3 (. s – B3)

R4 (. 4 – B4) 1 (16)

(18)

—

numbers; for example, L73- 1 is an N1 x N3 matrix containing and hence Rk = 1, which simplifies the submatrices T and

the corresponding elements of G3. If the terminals in y and z IV in (20) according to, for example

direction are interchanged, that is, 1 * 3 and 2 * 4, (16) is
T; = T1 (+1 + (tanh~.~=)-l)replaced by a completely analogous one.

For the determination of the scattering matrix, we compute W13 = ~3 (sinh~z~z)-l.

the outgoing waves B~ from the incoming ones Ai and obtain

the desired system of equations
We can now rewrite (21) in the form

(23)

‘RE%T!l’19)andsoon”The scattering parameters are obtained by solving (21) or

(24) for the outgoing wave vectors Bi.

Lwj, wj2 I 743 r; j ‘A4 J

The submatrices of the first two columns are determined as
E. Cascaded Junctions

shown in (20) at the bottom of the page. The submatrices of To demonstrate the approach, we consider a series connec-

the last two columns (n = 3,4) are obtained changing y to z tion of a general junction and a step discontinuity (Fig. 3).

in (20) and vice versa. In the junction, the incoming wave Az is unknown. We use

the transmission matrix equation (19) for the general junction

D. Waveguide Corner

In the case of the rectangular waveguide corner we can

simplify the above results. We delete the second and fourth

row and column in (19) and obtain

If we have N, = N1 and NY = N3 as in the plain corner,

the respective T and r matrices are equal, namely

and additionally the transmission matrix equation for the step

discontinuity [8] (15) in adapted form

with the submatrices

T; corresponds to the front plate of the step discontinuity

and the propagation is given by the Fourier matrices F+ =

7: = Ty~n (tanhrzjz)-l R. + T. (n= 1,2)

T mn = TV+ (sinh rzz.)’1 Rn (m, n = 1,2)

w = km (sinhrz~z)-l Rn (rn=3,4; n=l,2)
(20)

mn

WA. = Q-m V. (sinh rz~z)-l & (m=3,4; n=l,2).
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Fig. 3, Series connection of a general waveguide junction
discontinuity.
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Fig. 4. Symmetric rectangulw E-plane corner, (a) Convergence behavior of
the normalized shunt reactance X/Z.. 2b/Ag with respect to reciprocal matrix
size. (b) Normalized shunt reactance X/Z. 2b/Ag and its location d/b as
a function of normalized frequency. (Ag guide wavelength, Z. characteristic
impedance) o 00 MMT [1].

exp(+~~) where ~ is the normalized distance between the

junction and the step discontinuity. We eliminate A2 and solve

for the outgoing wave coefficients B to compute the scattering

matrix as above.

III. RESULTS

To verify the analysis of single and cascaded junctions,

the scattering parameters or the resulting equivalent circuit

parameters for two examplary structures have been computed

and compared with results of the mode matching technique

(MMT).

Fig. 4 shows the equivalent circuit parameters for a sym-

metric rectangular E-plane corner [1]. The equivalent circuit is

valid for the fundamental mode only. The network parameters

are computed from the scattering coefficients S11 and S21 by

the following relations

2
jlllzo =

1 + Sll + S2J
–1

2s21
~B2zo = (~+ 5j,)2 - s;, (27)

to
lslll -10

dB
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Fig. 5. Asymmetric E-plane T-junction. Magnitude of the scattering coeffi-
cients as a function of frequency 000 MMT [2].

and

x-( - 2B,Z0 + @’:;o+ ‘)-l
20 =

d
= 1 + Atari-l

z
(B,zo + 21?2zo)-1. (28)

~ob

The guide wavelength runs & = 27r/70ko and 20 is the

characteristic impedance of the .HIO mode.

In Fig. 4(a) the convergence behavior of the normalized

shunt reactance X/Z. . 2b/J~ with respect to the reciprocal

matrix sizes is given. As in the method of lines, not the whole

system matrix in (24) must be inverted, but only two half-size

matrices, the comparable matrix dimension is smaller for the

same accuracy. In Fig. 4(b) the normalized shunt reactance

and its location d/b are presented as a function of normalized

frequency. Both curves exactly coincide with the reference

values.

As an example for cascaded discontinuities, the scattering

coefficients of an asymmetric E-plane T-junction are presented

in Fig. 5 as a function of frequency, which are also in very

good agreement with MMT results [2].

IV. SUMMARY

For general junctions in rectangular waveguides the poten-

tial is computed on two crossed line systems. In the central

(resonator) region it is represented by a superposition of two

potentials with a one-dimensional discretization for each of
them. They are evaluated by field matching at the terminals

after suitable extrapolation to the boundaries of the respective

line systems. Finally, matrix equations are derived for the

incoming and outgoing waves to compute the scattering pa-

rameters. Cascaded junctions are easily analyzed by combining

the matrix equations.
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The scattering parameters for the asymmetric T-junction are

in good agreement with literature. For the E-plane corner, the

convergence of the MoL is better than for the mode matching

technique with respect to the matrix sizes.

APPENDIX

EXTRAPOLATION OF ~ POTENTIAL *Z TO z = O AND z = 1.

The potential in spatial domain

4, = T. V,

is calculated by means of the transformation matrix

r(T.),, = * Cos ‘i+$ (k=o... Ivl)l)
.%

on the lines z = (i + ~)h~ giving

We extrapolate this formula to z = O, where the cosine terms

become 1.

After discretization in y direction we obtain

&= ’51J=(=P (–7ykWzk +exp (7yL3WZk)
k=O

z

(i=o.. !lvy-l) (30)

With vi = (Z + ~)~v.

At the extrapolation to z = 1,, the cosine terms in (29)

become (–)~; hence, at this position (30) is valid with this

additional sign. Using (30), we finally obtain (9) and (12)

with (10).
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